Source code for algorithms.policy.MLP

import torch.nn as nn


[docs]class MLP(nn.Module): def __init__(self, input_size, hidden_size, output_size): ''' :param input_size: input feature dimension :param hidden_size: hidden layer dimension :param output_size: output dimension ''' super(MLP, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size[0]) self.relu = nn.ReLU() self.fc2 = nn.Linear(hidden_size[0], hidden_size[1]) self.fc3 = nn.Linear(hidden_size[1], output_size)
[docs] def forward(self, x): out = self.fc1(x) out = self.relu(out) out = self.fc2(out) out = self.relu(out) out = self.fc3(out) return out