Source code for algorithms.policy.MLP
import torch.nn as nn
[docs]class MLP(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
'''
:param input_size: input feature dimension
:param hidden_size: hidden layer dimension
:param output_size: output dimension
'''
super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size[0])
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size[0], hidden_size[1])
self.fc3 = nn.Linear(hidden_size[1], output_size)
[docs] def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
out = self.relu(out)
out = self.fc3(out)
return out